
B.3 Exercices sur les martingales

Posons σ2 = Var(R). Comme R ∼ N (0, σ2), on a donc

E(ϕ(X)|Y,Z) = E(ψ((Y, Z), R)|Y, Z)
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Comme R = X − V = X − (αX + βY ) = 〈(X,Y, Z)′, v′〉, et que
M est la matrice de covariance de (X,Y, Z), on a σ2 = 〈Mv, v〉,
ce qui donne le résultat voulu.

B.3 Solutions des exercices sur les martingales

Solution 21 1. Il faut montrer que que pour tout borélien A, l’en-
semble S−1(A) = {S ∈ A} est dans la tribu Fτ . Soit A un boré-
lien de R, n un entier naturel. On a

{S ∈ A} ∩ {τ = n} = {Sn ∈ A} ∩ {τ = n}, où Sn =
nX
k=1

f(Xk).

Par construction, Sn est Fn-mesurable, donc {Sn ∈ A} ∈ Fn.
Comme τ est un temps d’arrêt {τ = n} ∈ Fn. Par suite,

{S ∈ A} ∩ {τ = n} = {Sn ∈ A} ∩ {τ = n} ∈ Fn.

Comme c’est vrai pour tout n, on a {S ∈ A} ∈ Fτ . Comme A est
un borélien quelconque, cela donne la mesurabilité de S.

2. Si on prend f = 1A, on a {TA > τ} = {S = 0}. Comme S est Fτ -
mesurable et que le singleton {0} est un borélien, {S = 0} ∈ Fτ .
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CHAPITRE B : Solutions des exercices corrigés

3. Ici encore, il suffit de montrer que pour tout entier naturel n,
{τ1 < τ2} ∩ {τ1 = n} ∈ Fn. Or

{τ1 < τ2} ∩ {τ1 = n} = {τ2 > n} ∩ {τ1 = n}
= {τ1 = n}\{τ2 ≤ n}.

Comme τ1 et τ2 sont des temps d’arrêts, {τ1 = n} et {τ2 ≤ n}
sont dans Fn, d’où {τ1 = n}\{τ2 ≤ n} ∈ Fn, ce qui donne le
résultat voulu.

Solution 22 1. Posons Fn = σ(U1, . . . , Un). Par récurrence, on voit
facilement que Xn est mesurable par rapport à Fn. Ainsi,

E[Xn+1|Fn] = E[Un+1|Fn] +X2
nE[(1− Un+1)|Fn].

D’un autre côté, Un+1 est indépendant de Fn. On en déduit que

E[Xn+1|Fn] = E[Un+1] +X2
nE[1− Un+1] =

1 +X2
n

2
≥ Xn.

La suite (Xn)n≥0 est bien une sous-martingale.

2. (a) Xn+1 est une combinaison convexe de X2
n et 1. Ainsi, si Xn

est dans [0, 1], X2
n sera encore dans [0, 1], et par combinaison

convexe, Xn+1 sera encore dans [0, 1]. Ainsi, pour a ∈ [0, 1],
la suite (Xn) sera à valeurs dans [0, 1], donc bornée dans
L1. Comme (Xn)n≥0 est une sous-martingale, le théorème de
Doob assure que (Xn) converge presque sûrement vers une
variable X∗.

(b) E[Xn+1] = E[E[Xn+1|Fn]] = E1+X2
n

2 . Par convergence do-
minée (par (a)), le membre de gauche converge vers E[X∗]

tandis que le membre de droite converge vers E1+(X∗)2

2 . On
a donc

E(X∗) = E
�

1 + (X∗)2

2

�
.

Mais comme X∗ ≤ 1+(X∗)2

2 , on obtient que X∗ = 1+(X∗)2

2
presque sûrement, d’où X∗ = 1 presque sûrement.
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B.3 Exercices sur les martingales

Solution 23 1. Tout d’abord, remarquons que Xi étant borné par
1, Sn est une variable aléatoire bornée, de même que la variable
Yn = S2

n − n. Ainsi les variables considérées ont bien intégrables
et admettent bien des espérances conditionnelles.

S2
n+1 = (Sn+Xn+1)2 = S2

n+X2
n+1+2SnXn+1 = S2

n+1+2SnXn+1,

car Xn+1 ∈ {−1, 1}. Par suite

∀n ≥ 0 Yn+1 = Yn + 2SnXn+1.

Sn est la somme des Xi, pour 1 ≤ i ≤ n, donc la variable Sn
est Fn-mesurable, et par suite S2

n − n = Yn l’est aussi. Ainsi
E[Yn|Fn] = Yn. Comme Sn est Fn-mesurable, on a également
E[SnXn+1|Fn] = SnE[Xn+1|Fn]. Cependant, par construction,
Xn+1 est indépendante de la tribu Fn (les Xi sont indépen-
dants), donc E[Xn+1|Fn] = E[Xn+1] = 0. Finalement, par li-
néarité E[Yn+1|Fn] = Yn et (Yn)n≥0 est une martingale adaptée
à la filtration (Fn)n≥0.

2. T est le temps d’entrée de la suite (Sn)n≥0 dans le borélien
] − ∞,−R] ∪ [R,+∞[. Comme (Sn)n≥0 est adaptée à la filtra-
tion (Fn)n≥0 (on a vu que pour tout n, Sn est Fn-mesurable), il
s’ensuit que T est un temps d’arrêt adapté à la filtration (Fn)n≥0.
Mais (Yn)n≥0 est une martingale adaptée à la filtration (Fn)n≥0.
Or, le théorème d’arrêt dit que lorsqu’on arrête une martingale
adaptée à une filtration par un temps d’arrêt adapté à la même
filtration, le processus obtenu est encore une martingale adaptée
à cette filtration. Ainsi (YT∧n)n≥0 est une martingale adaptée à
la filtration (Fn)n≥0.
On va montrer que |ST∧n| ≤ R. On raisonne ici ω par ω, même si
la dépendance en ω est laissée implicite pour ne pas surcharger
les écritures.
Par définition de T , on sait que |Sn| < R pour n < T .
Si T = +∞, alors on a pour tout n, n < T et |ST∧n| = |Sn| < R.
Supposons donc T fini. Comme (|Sn|) est à valeurs entières, on
a, pour n < T , |Sn| ≤ R−1. Comme ST = ST−1 +XT , on a alors
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